Report on Face Segmentation

1. Flow Chart

2. Results

Test Case 1

Test Case 2

Low Resolution

Test Case 3

Low Resolution

Test Case 4

Low Resolution

Test Case 5

3. Non-frontal Test Cases (Low Resolution)

Test Case 7

Test Case 8

90 iterations

Test Case 9

4. Conclusion

1) It appears to perform robustly in the presence of weak boundaries, such as chin boundary.
2) Initial face contour should be inside the face region and the larger the better (time-saving).
3) Thick-border glasses have opposite impacts, which should be minimized.
4) Automatic detection of mouth corner positions is not accurate.
5) It significantly saves time if the input images are in low resolution (d_eyes $=20$ pixels), however the accuracy of face contour segmentation may decrease.
6) The algorithm should be improved to minimize deviations and failure cases.

5. References

[1]. Chunming Li, Chenyang Xu, Changfeng Gui, and Martin D. Fox, "Level Set Evolution Without Re-initialization: A New Variational Formulation", IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 430-436, San Diego, 2005
[2]. S. Osher, J. A. Sethian, "Fronts propagating with curvaturedependent speed: algorithms based on Hamilton-Jacobi formulations", J. Comp. Phys., vol. 79, pp. 12-49, 1988.
[3]. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002.
[4]. Yingjie Zhang, Liling Ge, "Two-Step Segmentation for Speedup of Convergence via Preprocessing," cisp, vol. 3, pp.734-738, 2008 Congress on Image and Signal Processing, Vol. 3, 2008
[5]. Fuping Zhu, Jie Tian*Modified fast marching and level set method for medical image segmentation, Journal of X-ray Science and Technology, Vol. 11, No.4, 2003, pp.193-204

